Google Gemma 3 27B IT
Gemma is a family of lightweight, state-of-the-art open models from Google. Gemma 3 models are multimodal, handling text and image input and generating text output. Privatemode provides a variant of this model that was quantized using LLM Compressor from FP16 down to FP8.
Model ID
leon-se/gemma-3-27b-it-fp8-dynamic
Source
Modality
- Input: text, image
- Output: text
Features
Context limit
- Context window: 70k tokens
Endpoints
Example
- Image input
from openai import OpenAI
import base64
import os
# docker run --pull=always -p 8080:8080 ghcr.io/edgelesssys/privatemode/privatemode-proxy:latest
# PRIVATEMODE_API_KEY=<> uv run --with openai gemma-vision.py
api_key = os.environ.get("PRIVATEMODE_API_KEY") # insert
api_base = "http://localhost:8080/v1"
image_path = (
"" # insert
)
client = OpenAI(
api_key=api_key,
base_url=api_base,
)
def encode_image_to_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8")
if not os.path.exists(image_path):
print(f"Error: Image file not found at {image_path}")
exit(1)
base64_image = encode_image_to_base64(image_path)
chat_response = client.chat.completions.create(
model="leon-se/gemma-3-27b-it-fp8-dynamic`",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{base64_image}"},
},
],
}
],
)
print("Chat completion output:", chat_response.choices[0].message.content)